The N-channel, Enhancement-mode MOSFET operates using a positive input voltage and has an extremely high input resistance (almost infinite) making it possible to interface with nearly any logic gate or driver capable of producing a positive output. Also, due to this very high input (gate) resistance we can parallel together many different MOSFET's until we achieve the current handling limit required. While connecting together various MOSFET's may enable us to switch high current or high voltage loads, doing so becomes expensive and impractical in both components and circuit board space. To overcome this problem Power Field Effect Transistors or Power FET's where developed. we now know that there are two main differences between FET's, Depletion-mode for JFET's and Enhancement-mode for MOSFET's and on this page we will look at using the Enhancement-mode MOSFET as a Switch.
By applying a suitable drive voltage to the gate of an FET the resistance of the drain-source channel can be varied from an "OFF-resistance" of many hundreds of kΩ's, effectively an open circuit, to an "ON-resistance" of less than 1Ω, effectively a short circuit. We can also drive the MOSFET to turn "ON" fast or slow, or to pass high currents or low currents. This ability to turn the power MOSFET "ON" and "OFF" allows the device to be used as a very efficient switch with switching speeds much faster than standard bipolar junction transistors.
In this circuit arrangement an Enhancement-mode N-channel MOSFET is being used to switch a simple lamp "ON" and "OFF" (could also be an LED). The gate input voltage VGS is taken to an appropriate positive voltage level to turn the device and the lamp either fully "ON", (VGS = +ve) or a zero voltage level to turn the device fully "OFF", (VGS = 0).
If the resistive load of the lamp was to be replaced by an inductive load such as a coil or solenoid, a "Flywheel" diode would be required in parallel with the load to protect the MOSFET from any back-emf. |
Above shows a very simple circuit for switching a resistive load such as a lamp or LED. But when using power MOSFET's to switch either inductive or capacitive loads some form of protection is required to prevent the MOSFET device from becoming damaged. Driving an inductive load has the opposite effect from driving a capacitive load. For example, a capacitor without an electrical charge is a short circuit, resulting in a high "inrush" of current and when we remove the voltage from an inductive load we have a large reverse voltage build up as the magnetic field collapses, resulting in an induced back-emf in the windings of the inductor.
For the power MOSFET to operate as an analogue switching device, it needs to be switched between its "Cut-off Region" where VGS = 0 and its "Saturation Region" where VGS(on) = +ve. The power dissipated in the MOSFET (PD depends upon the current flowing through the channel ID at saturation and also the "ON-resistance" of the channel given as RDS(on).
0 Comment:
Post a Comment